SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase

نویسندگان

  • Xiong Ji
  • Yu Zhou
  • Shatakshi Pandit
  • Jie Huang
  • Hairi Li
  • Charles Y. Lin
  • Rui Xiao
  • Christopher B. Burge
  • Xiang-Dong Fu
چکیده

RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to RNAP II during transcription activation. We report that SRSF2 (also known as SC35, an SR-splicing factor) is part of the 7SK complex assembled at gene promoters and plays a direct role in transcription pause release. We demonstrate RNA-dependent, coordinated release of SRSF2 and P-TEFb from the 7SK complex and transcription activation via SRSF2 binding to promoter-associated nascent RNA. These findings reveal an unanticipated SR protein function, a role for promoter-proximal nascent RNA in gene activation, and an analogous mechanism to HIV Tat/TAR for activating cellular genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nascent RNA length dictates opposing effects of NusA on antitermination

The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of...

متن کامل

Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb

Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRN...

متن کامل

Brd4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional Pause Release

Distal enhancers characterized by the H3K4me(1) mark play critical roles in developmental and transcriptional programs. However, potential roles of specific distal regulatory elements in regulating RNA polymerase II (Pol II) promoter-proximal pause release remain poorly investigated. Here, we report that a unique cohort of jumonji C-domain-containing protein 6 (JMJD6) and bromodomain-containing...

متن کامل

PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II

The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing...

متن کامل

Identification and characterisation of the porcine 7SK RNA polymerase III promoter for short hairpin RNA expression

The RNA polymerase III (pol III) type III promoters U6 and 7SK are routinely used to express short hairpin RNA (shRNA) molecules from a DNA construct. In this study, we identified, characterised and compared the porcine 7SK promoter in porcine (homologous) and non-porcine (heterologous) derived cell lines. The porcine 7SK small nuclear RNA (snRNA) was identified by alignment with known sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2013